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Linearized analysis of constant-property duct flows 
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Department of the Aerospace and Mechanical Engineering Sciences, 
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(Received 24 August 1967 and in revised form 7 May 1968) 

The conservation equations describing steady, incompressible flow in a variable- 
a.rea duct with mass transfer occurring at its walls are simplified by linearizing the 
inertial and convective terms. Solutions to a large class of problems can be 
obtained by means of the general method which is presented. Particular examples 
considered are entrance flow with heat transfer to an isothermal wall in the 
presence of mass addition, constant rate of injection of a foreign gas through the 
wall, vaporization and sublimation of a volatile wall material, and gas-phase 
combustion of a fuel which enters the duct from its wall. Comparison of the 
present results with previous work and with new experimental results is discussed 
for the first of these applications. It is concluded that the present results for 
velocity and pressure fields are likely to be accurate for small values of the 
Reynolds number based on wall injection velocity, that the present results for 
temperature and composition fields are likely to be accurate in the absence of 
wall mass transfer, and that in the absence of wall mass transfer the linearization 
technique is likely to exhibit its highest accuracy for flows with uniform entrance 
conditions. 

1. Introduction 
Non-linearity is the major obstacle in deriving solutions to the Navier-Stokes 

equations. Numerous techniques have been suggested for producing linear 
approximations to these equations. This paper concerns a particular linear 
approximation that resembles the simple approximation of Oseen (1910), which 
was modified and extended by Lewis & Carrier (1949), Carrier (1962) and by 
others. Originally developed for external flows, approximations of this type have 
occasionally been applied t o  internal flows. By means of one such approximation, 
Sparrow, Lin & Lundgren (1964) recently achieved remarkable success in 
describing the manner in which velocity and pressure fields develop from a 
uniform inlet velocity distribution to a Poiseuille distribution, in constant-area, 
impermeable-wall ducts of circular and infinite-strip cross-sections. This success 
prompted the study reported herein, the objectives of which were first to investi- 
gate the extent to which this type of linearization can be generalized for appli- 
cation to other types of constant-property duct flows and second to estimate the 
accuracy of the resulting generalizations in various cases. 

Since the Oseen approximation for external flows commonly is restricted to 
low Reynolds numbers, i t  may be worth emphasizing at the outset that the 
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Reynolds number will not be assumed to be low, and the boundary-layer equa- 
tions will be assumed to describe properly the duct flows considered herein. 
Heuristic justifications have been given (e.g. Williams 1963) for using the 
boundary-layer equations at moderate or high Reynolds numbers in imperme- 
able-wall duct flows, provided only that the length-to-width ratio of the duct is 
sufficiently large. There seems to be no reason for smoothly varying rates of wall 
injection to nullify the arguments, provided that the injection velocity is small 
in comparison with the cross-sectional average of the axial velocity. Most of the 
viscous duct-flow analyses that have appeared in the literature employ the 
boundary-layer equations. However, we should hasten to point out that there 
may well exist flow regions in which these equations are not valid. For example, 
boundary -layer analyses of flow development from a uniform inlet velocity 
profile yield an infinite axial pressure gradient a t  the inlet plane, a clear indication 
that the approximation breaks down at the entrance. The difficulties that arise 
(e.g. modifications in proper boundary conditions) when the full Navier-Stokes 
equations are used for resolving these troubles have been discussed by a number 
of authors (e.g. Cole 1968); accordingly, we restrict our attention almost entirely 
to cases in which the boundary-layer approximation is acceptable. Our criteria 
for success of a theory therefore are agreement with exact solutions to the 
boundary-layer equations and also agreement with experimental results that 
are not affected by flow regions in which the boundary-layer equations are 
inapplicable. However, we shall also discuss briefly in 5 3 new experimental 
evidence pointing toward possible failure of the boundary-layer equations in 
certain duct flows. 

Duct flows are more difficult to analyze than external flows in that the stream- 
wise pressure gradient is not known in advance when the solution to the 
boundary-layer equations is sought. Additional approximations therefore often 
are needed to render analysis of duct flows tractable. The core of the linear 
approximation considered herein, whose development as referenced by Sparrow 
et al. (1964) appears to have occurred largely in Soviet literature, involves the 
replacement 

in the inertial and convective terms. Here x is the streamwise co-ordinate. 
Variations on the theory arise by using different integral conditions for de- 
termining the functions U ( x )  and E(x) .  Choosing U ( x )  and E(x)  in such a way 
that an integral of the momentum conservation equation and an integral of the 
mechanical energy conservation equation are both satisfied was found by 
Sparrow et al. (1964) to lead to excellent agreement with velocity and pressure 
fields measured experimentally (for flow development in tubes of circular cross- 
section) and calculated numerically by finite-difference solutions to the boundary- 
layer equations (for flow development in two-dimensional channels). If the 
numerical, finite-difference solutions given by Hornbeck (1963) for the boundary- 
layer equations describing flow development in a circular tube are compared 
with this linearized solution, then one again finds excellent detailed agreement. 
These results, which are surprising at  high Reynolds numbers, will be inferred 
from the following analyses to be peculiar to flow development in ducts with 
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uniform initial velocity profiles. Although the accuracy of the results of the linear 
analysis appears in general to become progressively poor with increasing devia- 
tion of conditions from those of the relatively simple problems analyzed pre- 
viously, there is a range of conditions over which the theory is reasonably 
accurate. For uniform entrance profiles, reasonable accuracy is achieved for 
the velocity field when the injection Reynolds number is small, and for tempera- 
ture and composition fields when there is no wall mass transfer. 

The general theory is outlined in the following section. Four different types of 
applications are considered in the appendices, without regard for the accuracy of 
the theory in each class of applications. Except for the first class of applications, 
there appear to be no published results with which the present theory can be 
compared to ascertain its accuracy. The greatly extended range of applicability 
(although perhaps with poor accuracy) thus implied, may in itself contribute to 
the value of the theory. Comparison with previous work is possible for a number 
of applications in the first class. Such comparisons are given in the third section 
and are used to draw conclusions concerning the accuracy of the theory. 

2. Theory 
The equations with which we begin are the continuity equation and the 

boundary-layer forms of the momentum equation (with inertial, pressure- 
gradient and viscous terms) and of a set of diffusion equations (with convective 
and diffusive terms). The diffusion equations for the dependent variables pi 
describe the temperature field, composition fields or in a chemically reacting 
system fields defined by linear, temperature-composition combinations that 
effect the elimination of chemical source terms in the manner demonstrated by 
Williams (1965, pp. 9-13). We reserve vector notation (r, V ,  etc.) for the two- 
dimensional space orthogonal to the flow (x) direction. The wall of the variable- 
area duct is given by a curve C (x) in the plane orthogonal to x. We assume that 
the cross-sections of the duct are geometrically similar in the sense that two 
Cartesian co-ordinates orthogonal to x can be multiplied by a function of x to 
produce a stretched transverse co-ordinate system in which the wall curve is 
C, = C(0) for all x. Curvature of the centre line and twist of the geometrically 
similar cross-sections are excluded. The unit of length is taken to be the square 
root of the duct cross-sectional area at  x = 0,  the unit of mass is chosen so that 
the density is unity, and the unit of time is then chosen so that the coefficient 
of viscosity is unity. All quantities appearing in this paper are therefore non- 
dimensional (except for certain of the quantities /3 discussed in the appendices). 
The conservation equations (in stretched transverse co-ordinates) then become 

b 2 u , - b b f r . V u f b U . v  = 0, (la) 

(1 b )  

(1c)  

where a subscript x denotes a partial derivative with respect to x, a prime denotes 
a total derivative with respect to x, the quantity b(x) denotes the square root of 

b2uu, - bb'ur . Uu f b v .  Wu = - b2p' f V2u, 

b2upi, - bb'ur . Up, + bv . Vpi = uV2Pi, 
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the cross-sectional area of the duct and CL = pD = A/c, denotes the diffusivity 
for heat and mass, which is assumed to be the same for all fields but need not 
equal the diffusivity for momentum. 

The unknown pressure gradient can be eliminated from the momentum 
equation by performing an integration over the cross-sectional area and by 
using the no-slip condition at  the wall. Unless both b’ =l= 0 and v . n + 0 at the 
wall, the correct no-slip condition is u = 0. When both b’ + 0 and v . n 4 0 at the 
wall, the error involved in using u = 0 as the wall boundary condition is of an 
order of magnitude that is no greater than bt2 in all of the formulas except for 
( 2 ) ,  in u-hioh a term involving b’(v .n)2 should occur. We assume in the develop- 
ment that b’ is sufficiently small for terms of order bI2 to be negligible, and we 
therefore use u = 0 as the no-slip condition. In this manner, the relationship 

b2p‘ = $n.Vuds- ( b 2 / j u 2 d A )  5 

is obtained, where $ denotes a closed-line integral around the wall curve C,, 
whose outward pointing normal is denoted by n, and JJ denotes a surface integral 
over the total cross-sectional area of the duct. The substitution of ( 2 )  into 
( 1  b )  yields an integrodifferential equation which does not involve p’. 

The linearization discussed in the introduction is achieved by replacing the 
left-hand sides of (1 b )  and (1 c )  by 

U(u ,  pi,, + (E ,  E A  

where U ,  E and Ei are independent of the transverse co-ordinates. We shall 
take Ei = 0, since it can be shown that the solutions for the pi fieids are inde- 
pendent of the choice of E,(x). However, E(x)  will be retained in the momentum 
equation, because otherwise erroneous pressure gradients would be obtained. 

The integral of (1 a )  over the cross section shows that the linearized form of 
( 2 )  becomes 

n.  v d s  + (2Ub’/b)1JudA. ( 2 ‘ )  

The approximation b z / / u d A  = U (3) 

is introduced (only) into the last term in ( 2 ’ ) ,  yielding a manageable formula for 
p’,  and reducing (1 b )  and (1 c) to 

Uu, = -21J2b’/b3-  n . v d s U / b -  (4) +- 
and up,, = av2pi. 

The equations are linear in the absence of the approximation given in (3), but a 
troublesome variable coefficient appears (unless b‘/b is constant) if (3) is not 
introduced. In  (4), the first two terms on the right-hand side account for the 
change of momentum due to area convergence and mass addition at the walls, 
respectively; the approximation in (3) affects only the first of these two terms. 
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In  terms of the variable 
r r  

we define the function 

F(<) = -2U2b'/bu,- 
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(6) 

( 7 )  

where uo is the value of u at  x = 0,  which we assume to be independent of the 
transverse co-ordinates. The solution to (4) then can be written in the form 

where g j  are eigeiifunctions and aj are eigenvalues for the integrodifferential 
equation 

a;gi- $n.Vgids+v2gi = 0, ( j  = 0 ,1 ,2 ,  ...) (9) 

subject to the boundary condition 

g j  = 0 on C,, ( j  = 0,1,2,  ...), 

and the coefficients ci are given by 

The function go is proportional to the fully developed velocity profile (a, = O ) ,  
while gj for j = 1,2 ,  ..., are mutually orthogonal and also orthogonal to unity. 
Equation (9) has been solved by Sparrow et al. (1964) for the circular tube and 
for the two-dimensional channel, and the corresponding eigenfunctions and 
eigenvalues are listed by them. All of the eigenvalues except a, are positive. 

Equation (8) already provides solutions to a variety of problems. In  the 
simplest variation of the theory U can be set constant, equal to its value at  
x = 0. Then F(6)  is a known function, provided that the duct area and the wall 
injection rate are specified functions ofx. In view of the fact that gi, aj and hence 
c j  have already been determined for circular and strip cross sections, it follows 
that the velocity distribution can be calculated directly from (8) for arbitrarily 
specified duct area variation and wall injection rate, in these geometries. Re- 
finements to this calculation can be made by allowing U t o  vary with x. One 
may set 

U = u,-/oxb $n.vdsds 

to satisfy an over-all continuity equation with the approximate convective 
velocity. Alternatively, one may allow U to vary with x in such a way that a 
linearized over-all mechanical energy conservation equation is satisfied in 
addition to the linearized over-allmomentum equation, thereby obtaining results 
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which for the straight duct without mass addition are equivalent to those of 
Sparrow et a,l. (1964). Another alternative is to allow U to satisfy (11) but intro- 
duce an x-dependent viscosity coefficient that varies with x in such a way that the 
linearized over-all mechanical energy and momentum equations are both satis- 
fied; the straight-duct, no-mass-addition limit of this result will also be identical 
to the previously successful result. These last two refinements will not be carried 
out here. 

There are systems in which the wall injection rate is influenced by temperature 
and composition fields within the duct, so that P(6) in (8) is not known until the 
solution to ( 5 )  is obtained. The solution to ( 5 )  will depend on the boundary 
conditions that are to be applied at  x = 0 and at the duct wall. We assume that 
at x = 0, pi = pie, a known constant, and that the wall boundary condition 
can be expressed in the form 

where all of the quantities Aki,  Bki and C, are permitted to be functions of x, and 
the subscript w identifies conditions at  the wall. If F(6)  is known then there 
are the same total number of k’s as i’s. If F(6)  is not known, the total number of 
k’s exceeds the total number of i’s by one; the additional equation determines the 
injection rate which appears in C, and/or Aki. In  the following discussion, we 
assume that an unknown injection rate can be made to appear in just one equa- 
tion, whence there exists an independent set of equations with known coefficients. 
It can be seen from (12) that coupling among the various pi fields is permitted 
through the boundary conditions. A wide class of problems obeys the restrictions 
imposed here; specific examples can be found in the appendices. 

Following a suggestion of P. A. Libby, we shall assume that the solutions 
GA(z,  r) and G,(z, r) to the following two basic problems are known: 

Solutions for the wall conditions given in (13) are often available when solutions 
for other wall conditions are not. Solutions may be written in terms of ex- 
pansions analogous to but simpler than that defined in (8) ,  (9) and (10). The 
solution to ( 5 ) ,  subject to the condition pi = pi0 at x = 0 ,  can then be written 

or 

in which the subscript, ’UIZ implies that the wall value is to be differentiated with 
respect to at, and then 6 is to be set equal to z/a in the function obtained from the 
differentiation. 

For each pi, we adopt the representation given by either (14a) or (14b). The 
choice is based on the form of the boundary condition (12). If for some i, BlCi = 0 
for all k and x, then we use (14a) for this i; if for another i, A,, = 0 for all k and x, 
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then we adopt (lab) in this case. If for a given i, both A,$, and B,<, differ from zero 
somewhere, then the choice is open, but generally (144  is to be favoured when 
lAkil > (B,,] for most k and x, and vice versa. The coupling functions Pi are thus 
divided into two classes, ( A )  and (B),  according to whether ( l 4 a )  or (lab) is 
employed, respectively. 

The boundary condition (12) remains to be satisfied. In  view of (14), this 
condition can be written as 

The unknowns in (15) are /Iiw - pi,, and (n . V/?i)m, which can be considered to be 
components of a vector function f3 of a& Equation (15) then can be written in 
matrix notation as 

Jzf(c4) P(a5) +[%aE, 2 )  (dldz) P ( Z ) d Z  = C @ O ,  (15') 
0 

where the definitions of the square matrices d and L49 and of the vector C are 
apparent by comparison. Equation (15') is obviously a matrix integral equation 
for P(at). Its solution may be calculated from the iterative formula 

with P(O)(a[) s 0. Here the superscript (n) identifies the iteration, and d-l is 
the inverse of the matrix d. The iterative procedure implied by (16) will yield 
p for many but not all problems. 

3. Comparison with other work and with experiments 
There have been many investigations of flow fields and heat transfer in con- 

stant-area ducts, both with and without mass transfer at  the walls. These results 
can be compared with the application developed in appendix A. We shall begin 
by discussing the flow field, first considering flows without mass transfer and then 
flows with mass transfer. We close with some remarks about heat transfer. 

3.1. EntranceJlow in a tube without heat or mass transfer 

The entrance flow field in a duct of circular cross-section without mass transfer 
has been discussed extensively in the literature. In  the limit k + 0, (A 2) and 
(A 3) approach the velocity and pressure fields that were called 'Targ-type ' by 
Sparrow et al. (1964); the 'Targ-type' solution employs U = u, and does not 
satisfy an integral form of the mechanical energy conservation equation. The 
k: = 0 solid curves of figure 1 should therefore agree exactly with the points 
labelled ' Targ-type'. The very slight differences that are shown are indications of 
the errors in the solid curves of figure 1, which arise from truncating the series 
in (A 2) at j = 25. These errors are not present in the results of Sparrow et al. 
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(even though a corresponding series was also truncated at  j = 26) because it is 
possible to sum certain terms exactly when k = 0; in the present work, the trun- 
cation procedure employed for k =t= 0 was also used for k = 0 to facilitate 
comparison. 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 

6 
FIGURE 1. Axial development of velocity in a circular duct with uniform inlet conditions. 
Notation for curve labels is ( k ,  7). Solid lines identify the present theory, x , ‘Targ-type’ 
theory; 0, numerical calculation of Hornbeck. Experimental results of Aihara are identi- 
fied by: v, (0, 0); 0, (0, 0.6); A, (0, 0-8). 

The points labelled ‘numerical calculation’ in figure 1 were obtained by 
Hornbeck (1963) from a finite-difference solution to the boundary-layer form 
of the governing partial differential equations for k = 0. These points, which 
probably represent the most accurate resu1t)s currently available, differ at  most 
by a few percent from the solid curves of figure 1 and agree almost exactly with 
the improved results of Sparrow et al. 

The experimental points shown in figure 1 were obtained in recent hot-wire 
measurements, performed by Aihara for air flow through a porous-inlet tube, 
30 in. long and 3 in. in diameter. They agree more closely with Hornbeck’s points 
than with the solid lines, but they appear to exhibit radial profiles nea,r the 
entrance that are slightly flatter in the centre of the duct than are the theoretical 
profiles. The accuracy of these experiments is comparable with or better than 
t,hat of previously reported measurements; it is of the same order of magnitude 
as the difference between theory and experiment. Nevertheless, the systematic 
discrepancy between theory and experiment llzay point toward failure of the 
boundary-layer approximation. 
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3.2. EntranceJEow with inass transfer in u tube 

The curves for k $: 0 shown in figure 1 represent portions of the results of calcula- 
tions that were performed on the basis of the present theory. Given in table 1 is 
another sample of the theoretical velocity fields obtained from (A 2).  The theory 

1.6 

1.4 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

0 0 2  0 4  0 5  0 8  10 

7 
FIGURE 2. Comparison of development-zone velocity profiles with numerical results of 
Hornbeck et al., for k = 31-416. Dotted lines identify the present theory, solid lines 
Hornbreli et ul. 

predicts that the radial profiles of velocity tend to remain flatter when k is large 
than when k is small. Corresponding calculations have been reported by Horn- 
beck, Rouleau & Osterle (1963), who obtained finite-difference, numerical 
solutions to the boundary-layer form of the conservation equations for circular 
ducts with mass injection at the wall. Figure 2 shows a comparison of velocity 
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profiles given by the present theory with those of the numerical calculations, 
for flow development from a uniform inlet profile in a porous tube having 
k = lor .  The comparison shows that the present results exhibit somewhat broader 
profiles at  this value of k .  The pressure distributions are in better agreement, as is 
indicated below (for k = lor): 

kt- 0.148 0.588 1.030 

P, Hornbeck et al. (1963) 1.338 2.617 3.132 
P, present theory 1.31 1 2,703 3.197 

Here the reduced pressure is P = e-zk~(p,,-p)/(+pu%). Listed in table 2 are ad- 
ditional pressure distributions obtained by first summing the series in (A3) to 
j = 25, then using an asymptotic expansion for the roots of Bessel functions to 
evaluate the contribution to P from the termsj > 25. 

\k 
kk-\ 

1 x 10-3 
2 x 10-3 
5 x 10-3 

1 x 10-2 
2 x 10-2 
5 x 10-2 

1 x 10-1 
2 x 10-1 
5 x 10-1 

1 
2 
5 

1 

0.4035 
0.5921 
0.9878 

1.4660 
2.1947 
3.8424 

6.1644 
10.1439 
18.2531 

24.4882 
27-6258 
28.1157 

10 

0.1138 
0.1706 
0.2916 

0.4362 
0.6542 
1.1240 

1.6900 
2.4957 
3.8701 

4.8475 
5.3356 
5.4118 

100 

- 
0.0959 

0.1479 
0.2381 
0.4522 

0.7323 
1.1620 
1.9467 

2.4987 
2.7571 
2.7940 

TABLE 2. Pressnre distributions for entrance flow with injection 

1000 

- 
0.2558 

0.4564 
0-7924 
1.4512 

1.9418 
2.1825 
2.2197 

Entrance flow with wall mass transfer also was analyzed by Weissberg (1959), 
who used the average technique of Morduchow (1957) (akin to a K&rm&n- 
Pohlhausen technique) to reduce the equations describing flow development in 
a circular duct to an ordinary differential equation (in x) that was integrated 
analytically. Since the method of Weissberg is applicable only to a one-parameter 
family of entrance velocity profiles that does not include the uniform velocity 
profile, comparison with the results that we have been discussing is not possible. 
Although we have chosen uniform initial profiles for all flow variables, our theory 
is easily generalized (by redefining the coefficients c j  and by introducing suitable 
changes in the method for calculating the pi fields) to include arbitrary initial 
profiles that obey suitable symmetry conditions. In  particular, (8) to (10) are 
easily modified to account for a parabolic initial velocity profile, which was the 
profile selected from the one-parameter family by Weissberg for presenting 
results. Corresponding numerical calculations by Hornbeck et al. (1963) are in 
good agreement with the results of Weissberg in this case. When the present 
theory is modified appropriately, it is found that with parabolic initial profiles 
u(f ,  r)/u(f;, 0) = 1 - r2 for all k and 6 ;  the shape of the velocity profile remains 
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invariant ! This result does not differ greatly from many of the results of Weiss- 
berg, which show little change of the velocity profile in the entrance region 
except at high suction rates ( k  < - lo), but the result does accentuate a short- 
coming of the present linearization for k + 0: the velocity profile throughout the 
entire length of the duct, as predicted by generalizations of the present theory, 
depends on the entrance velocity profile when the wall injection rat'e is a constant 
($n.vds = const + 0). Other aspects of this difficulty will be emphasized in the 
following discussed of asymptotic ( f  -+ co) flow properties. 

3.3. Fully developedflow with muss tra.nsjer in a tube 

Fully developed flow in a duct of circular cross-section, with constant wall mass 
transfer ( k  = const), was analyzed by Yuan & Finkelstein (1956), who discovered 
a similarity solution to the full Navier-Stokes equations for this problem. It is 

I I I I I I I I I I 
0.5 

0 

- 0.5 

- 1.0 

- 1.5 

- 2.0 

rl 

FIGURE 3. Comparison of coefficient of k in power-series expansion of' velocity profile for 
fully developed flow in a circular duct. 

generally a,greed that at large distances downstream from the entrance plane 
(kf; 3 l) ,  Yuan's results correctly describe the flow field, provided that k is 
sufficiently small (k < 1). Therefore it is of interest to compare our asymptotic 
(k%+m) results for small values of k with the small-k result,s of Yuan. For the 
reduced pressure P,  (A3) yields 

while Yuan gives 

the first two terms in these expansions agree exactly, and the third terms agree 
in sign but differ in magnitude by a factor somewhat greater than 2. A comparison 

P = (8n /k )  + 3 + (5lC/l6j.r) x 0.1 1126 + O ( P ) ,  

P = (Sn /k )  + 3 + (5k/lBn) x 0*26074+ O ( k 2 ) ;  
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of the fully developed, small-lc velocity profile predicted by (A 2) with the corre- 
sponding result of Yuan is shown in figure 3, where the coefficients of the terms 
that are linear in k are plotted; the agreement is seen to be good. We might infer 
that for initially uniform velocity profiles the present analysis is likely to yield 
reasonably accurate flow fields at  sufficiently small values of k. Extensions of the 
present analysis to non-uniform initial velocity profiles will not always yield 
accurate results for small k (e.g. for an initially parabolic profile, the theoretical 
curve in figure 3 would be identically zero). 

Fully developed pipe flow at large values of Ikl presents a more complicated 
analytical problem. For the corresponding two-dimensional channel problem, 
Proudman (1960) and Terril (1964, 1965a) have shown that boundary layers 
develop on the walls for negative k and in the centre of the channel for positive 
k ,  thereby invalidating the analogue of Yuan’s solution. These same phenomena 
occur in a duct of circular cross-section. For large negative values of k,  these 
phenomena strongly modify the flow field, thereby negating the results of many 
earlier approximate analyses. Consequently, accurate flow fields are not known 
for large negative values of k, and we shall not consider this case. For large 
positive values of k ,  it turns out that the limiting (k-+co)  solution of Yuan 
remains valid, but the correction terms (involving powers of l / k )  for the velocity 
profile are likely to be in error near the centre of the duct (cf. Terril 1965a). 
In  the limit k --f co, the fully developed, reduced pressure P given by the present 
theory (A 3) becomes 

while Yuan obtains 
P = 2+4/(~k)*+ ..., 

P = 2-4674-t (8n/k)(l*3253)+ ...; 

these results differ numerically in the first term and functionally in the second. 
Yuan’s result is probably the better of the two (although it too may be function- 
ally incorrect), and therefore we may conclude that the present theory is poor 
for large values of k .  

This conclusion is further supported by the velocity profiles shown in figure 4. 
The value of k employed in the experiment is so large that the corresponding 
fully developed velocity profile of an accurate theory is expected to differ by less 
than a percent or two from the profile of Yuan with k = 00. Agreement between 
Yuan’s theory and experiment is seen to be excellent, except in a small range of 
radius around 7 = 0.9. The discrepancy in this range is not produced by in- 
accuracy in the theoretical fully developed velocity profile, because corrections 
to the theory can occur only near 7 = 0. Instead, the discrepancy is due to the 
fact that the experimental profiles are not quite fully developed; this interpre- 
tation is supported by the observation that increasing u, A improves agreement. 
To explain why the experimental profile develops in the observed manner is 
likely to be difficult. The boundary-layer calculations of Hornbeck et al. (1963) 
produce profiles whose curvatures are always negative in the development region, 
but the experiment shows an inflexion point in the developing profile. An ex- 
tension analogous to that of Atkinson and Goldstein (Goldstein 1938, p. 304), 
of the Boussinesq (1891) method of expanding about the fully developed flow- 
seems best suited for attempting to explain the observations. 
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The present theory predicts that the experimental velocity profile should be 
essentially fully developed and should be much flatter than observed. The curve 
for k = 100 shown in figure 4 indicates that contrary to the results of the 
accurate theory, the fully developed profile of the present theory varies appreci- 
ably with k in this high-k r6gime. It can in fact be seen from (A 2 )  that the present 

I I I I 
I1 0.2 0.4 0 6  0.8 1 .o 

r 
FIGURE 4. Velocity profiles for fully developed pipe flow a t  large values of k.  Dotted line 
identifies the present theory for k = 100, broken line the present theory for k = 425, solid 
line Yuan &Finkelstein (1956) theory for k = 00. Points correspond to Aihara experiments 
for k = 425, eight tube diameters downstream from entrance plane where 0, u,A = 0 cfm, 
a, u,A = I cfm, 0, u,A = 2 cfm. 

theory predicts that u(<, y)/u(<, 0) + 1 as k +  cc for all values of .$ and 7; i.e. the 
profile becomes perfectly flat and the development zone vanishes. Generaliza- 
tions of the present theory to non-uniform initial profiles show that as k +  00 

the development region always vanishes and the fully developed profile is always 
the same as the entrance profile (and therefore is not always flatter than the 
correct fully developed profile). These unreasonable results demonstrate clearly 
that the linearization is erroneous for large values of 1 kl , a conclusion which 
might have been premised from the observation that transverse inertial forces 
are large in the vicinity of the wall. 
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3.4. Heat transfer in a tube with a fully developed velocityJield 

Among the many possible heat transfer studies with which results of the present 
theory can be compared, we choose heat transfer in a fully developed velocity 
field for the small-k rbgime, in which the present velocity field is most accurate. 
Accurate results for this problem, in the case of a two-dimensional channel 
subjected to  a step in wall temperature at  a specified axial position, recently have 
been reported by Terril (1965b). We first consider the asymptotic (t-+ co) heat 
transfer rate in a duct of circular cross-section whose walls are maintained at a 
constant temperature that differs from the inlet temperature of the fluid; the 
asymptotic heat transfer coefficient for this problem is the same as the asymp- 
totic heat transfer coefficient that is achieved when a step in wall temperature is 
applied at  any specified axial position. For the asymptotic Nusselt number based 
on tube diameter our theory gives 

where ai and y1 = 2.4048& are the eigenvalues defined in appendix A. For 
k = 0, this formula yields N u  = 4.18, a value which does not differ too greatly 
from the result of Nusselt (1910), N u  = 3.66, obtained from a numerical integra- 
tion of the partial differential equation that describes the temperature field. 

The value of N u  predicted by the present theory is monotonic in k and 
approaches y?/n = 5.783 as k-t co. Therefore thevalueof N u  is found to depend 
only weakly on k for k 2 0, but the value increases as k increases. This dependence 
is a direct consequence of the change in the u field as k changes, and it enters 
only through the definition of the average temperature difference, 

which decreases as k increases. In the correct physical description of the system, 
this dependence is counteracted by a decrease in the rate of heat transfer due to a 
modification of the temperature profile caused by inward radial convection. This 
convective effect, which is not included in the present theory, is generally larger 
than the effect due to the change in B, and therefore the sign of 8 Nu/ak given 
by the present theory is incorrect. Furthermore, the present theory predicts that 
N u  is independent of the Prandtl number a,  a result which almost certainly is 
incorrect for all k =t= 0; see Terril (1965b). We may therefore conclude that the 
description of the temperature field provided by the present theory, for heat 
transfer to an isothermal wall, is inaccurate when mass transfer occurs through 
the walls. Hence, there is no justification for proceeding to make more detailed 
comparisons of the present results with other theories for problems of this type. 
This unfavourable result does not necessarily imply that the theory will be 
inaccurate for the applications considered in appendices B, C and D. 

In  summary, it may be stated that the theory presented herein produces 
reasonably accurate velocity and pressure fields for duct flows with wall in- 
jection, provided that the Reynolds number based on injection velocity is 
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sufficiently small. At large injection Reynolds numbers, the present theory is 
highly inaccurate, especially for the velocity field. Furthermore, the temperature 
field in a duct with isothermal walls is described poorly by the present theory, 
unless the Reynolds number based on injection velocity is zero. 

The author wishes to thank the Air Force Office of Scientific Research for 
providing support for this work through Grant no. AF-AFOSR-927-66 and 
Y. Aihara for making his experimental results available for comparison with this 
theory prior to their publication. Thanks are also extended to many of my 
UCSD colleagues, particularly D. R. Kassoy, P. A. Libby and J. W. Miles, for 
helpful discussions concerning this problem. 

Appendix A. Entrance flow with heat transfer to an isothermal wall 
Consider the entrance flow of a one-component gas which has a temperature 

To at x = 0 and a constant temperatre T ,  at the walls of the duct. A specified 
wall area variation and a specified rate of injection at  the wall are both permitted. 
In  this case there is only one coupling function /I, which may be taken to be the 
thermal enthalpy of the gas. The solution for the temperature field is given most 
convenient’ly by (14a), in which /I,, = (/I, - Po)S(z), where /I, is a known constant. 
Thus, 

The solution for the velocity field is given by (S), in which F ( < )  is a prescribed 
function. For a circular cross-section. 

m 

G, = 1 - a j J , ( y j r )  exp ( - yj” aE), 
j = l  

where J ,  is the zero-order Bessel function of the first kind, yi are the roots of 

Jo(yl214 = 0 3  

and the coefficients a j  are given by 

The example cited here serves to illustrate a number of drawbacks of the 
present theory. Even when the cross-sectional area of the duct is constant and the 
questionable approximation (3) does not appear, mass addition merely alters the 
axial location at which a particular temperature profile is attained, without 
influencing the shape of the temperature profile. In  other words, both y j  and the 
coefficient of exp ( - y5ac) in GLi are independent of P(<). It is clear on physical 
grounds that local mass addition must modify the shape of the radial tempera- 
ture profile in the vicinity of the wall, because of the consequent radial convection. 
This effect does not appear in the present formulation. The theory is closer than 
desirable to a quasi-one-dimensional theory. 
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It is of interest to calculate explicitly the velocity profiles and pressure 
gradient in a constant-area duct of circular cross-section, with a constant value 
of the non-dimensional rate k at which mass is injected through the wall. The 
quantity k is defined as the ratio of the mass injected per unit duct length per 
second to the coefficient of viscosity. Positive values of k correspond to blowing, 
negative values to  suction. Employing ( l l ) ,  one finds from (6), (7 )  and (8) that 

ekt  = 1 + kx/u,, 
and 

'EL = 2uo( 1 - r2)  ekt 

U = uo + kx, F (6) = k e", 

where aj are the positive roots of J2(aj/4n) = 0, and 7 = r/ro,  ro = 1/2/71 being the 
duct radius. Equations ( 2 )  and (A 2) show that 

+ 4 ( e W  - I + [a;/(/: +a;)] (ekf - exp ( - a ; ~ ) j  . (A 3) 

Equation (A 3) agrees with the corresponding result given by Sparrow, et al. 
(1964) in the limit k+O and approaches a 'fully developed' limit of 

as k&-+ co (implying a quadratic decrease of pressure with distance). 

Appendix B. Constant rate of injection of a foreign gas 
Consider flow of a two-component non-reacting gas through a duct. Pure 

species 1 enters at x = 0, and pure species 2 is injected at  a constant rate (mass 
per unit length per second) through the wall; it should be clear from the results 
how to remove the restrictions to pure species. It is appropriate here to let pi 
be the mass fraction of species i .  Since p1 + p2 = 1, we need to solve for only one 
of the p fields. Choosing p,, we have the boundary conditions p, = 1 at x = 0 
and n. vp, = an,  Op, at the wall. The last of these conditions is of the form of 
(12), with C, = 0, B,, = 1, A,, = - (n .v),/a. The solution for pl may be cal- 
culated from the iterative procedure defined in (16). However, for the present 
problem, and indeed whenever all elements of Aki,  Bki and C, are constant, itera- 
tion can be avoided by adopting a slightly different procedure. 

The present problem can be written in the form 

W , / W )  = v2p1; 

p1 = 1 for 6 < 0, 

A,,P1, + (n. V/& = 0 for C > 0. 
17 Fluid Mech. 34 
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Let hi be eigenfunctions and Si be eigenvalues of the two-dimensional problem 

S3hj + V2hj = 0, 

Then 

Allhi,  + (n. Vh,),n = 0. 

For a duct with a circular cross-section of initial radius r,, we find that 

hi = J o ( S j r l J 4 ,  
where 7 = r/ro and Si are the roots of 

In this case, the solution for P1 becomes 

The eigenvalues aj can be computed numerically; their values will depend on the 
value of All. Since A,, > 0 by definition in this problem, all eigenvalues are 
positive. 

It may be remarked that (A 2), (A 3) and (B 1) provide solutions for the velocity, 
pressure and concentration field in a constant-area duct of circular cross-section, 
with a constant rate of injection of a foreign gas; the transverse velocity can be 
obtained from the axial velocity by integrating (1 a). The same formulas provide 
solutions for the velocity, pressure and temperature fields in a constant-area duct 
of circular cross-section, with a constant rate of injection of a gas which has a 
constant temperature differing from that of the inlet gas. This conclusion follows 
from the observation that the quantity ( h  - h,)/(h, - h,) (where h is thermal 
enthalpy per unit mass, the subscript 1 identifies the inlet gas, and the subscript 2 
identifies the gas injected through the wall) obeys precisely the same differential 
equation and boundary conditions that Pl obeys. Subject to the basic hypothesis 
that the diffusivity a is a known constant, the solution for the enthalpy field is 
independent of the chemical composition of the non-reacting inlet and injected 
gases. Thus, the entire flow field has been determined for the problem of a con- 
stant-area duct with a constant rate of injection of a foreign gas at  a, temperature 
differing from that of the inlet gas. 

Appendix C. Vaporization or sublimation of the wall material 
Consider a two-component, non-reacting gas, with pure species 1 entering at 

x = 0 and species 2 maintaining phase equilibrium at a solid or liquid wall. The 
wall injection rate depends on solutions for the coupling functions. 

It is convenient to let P1 represent the mass fraction of species 1 and /I2 denote 
the ratio of the local thermal enthalpy (per unit mass) to the thermal enthalpy 
(per unit mass) a t  x = 0. Boundary conditions for the two coupling-function 
fields then become P1 = Pz = 1 at x = 0 and 

(an. V P l ) ,  = (n. VPl),, (an. VP,), = (n. vow (C 1) 
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at the wall. In  the last expression, 1 is the ratio of the heat required per unit mass 
for gasification of species 2 to the thermal enthalpy per unit mass a t  x = 0 and is 
assumed to be a known constant. These boundary conditions are sufficient for 
determining both p fields in terms of the unknown injection rate (n . v),, thus 
yielding formulas for pl, and p2, in particular. 

The phase equilibrium condition provides an additional independent re- 
lationship among plw, p2, and (n .v),, thereby determining the injection rate. 
The equation for phase equilibrium is obtained by setting the partial pressure of 
species 2 at the wall equal to its equilibrium vapour pressure p,. The equilibrium 
vapour pressurep, at the wall is a known function of the wall temperature, which 
in turn is a known function of p2,; i.e. pe = pe(pzw). Relating mass fractions to 
mole fractions, we then find 

to be the formal expression for wall equilibrium, where w is the ratio of the 
molecular weight of species 2 to that of species 1. The pressurep which appears in 
(C 2 )  is to be obtained from the integral of (2); p therefore depends on (n. v),,,. 

The boundary conditions for p2 are such that an expression for p2 (and hence 
for p2,) can be written from (14 b) .  The expression involves (n . v), and integrals 
of it. Also, (8) may be utilized to integrate (2), thereby providing a closed-form, 
infinite-series expression for p in terms of (n . v), and various of its integrals. 
Equation (C 2) therefore can be solved for Flw in terms of (n . v), and its integrals. 
The resulting formula and the boundary condition for p1 at z = 0 can be used in 
(14a) to provide a complicated, closed-form expression for the field in terms 
of (n . v), and its integrals. The first boundary condition in (C 1) then will yield 
a single integral equation for (n . v),. The final integral equation will not possess 
a simple analytical solution. 

There are numerous special conditions under which this complicated pro- 
cedure can be simplified. These include cases in which (po -p)/po < 1 for all z and 
cases in which ( U  - uo)/U < 1 for all x. Instead of attempting to discuss all 
possible limiting cases, we shall discuss only the case in which pe(p2,) depends 
so strongly on surface temperature that the solution to (C 2) yields a very small 
change in pZ, over the entire range of variation of p and plw within the duct. 
Heats of gasification are often high enough for this to be true. Equation (C 2) then 
reduces approximately to p2, = constant; 

the wall temperature is approximately equal to a constant equilibrium vaporiza- 
tion or sublimation temperature. We shall consider the consequences of treating 
p2, as a known, specifiable constant. 

With p2, = constant, the temperature fields is given explicitly by (A 1).  The 
second boundary condition in (C 1 )  then yields the gasification rate (n .v), 
directly; neither velocity, pressure nor concentration fields need be considered in 
calculating the gasification rate, but in general (e.g. if the cross-sectional area is 
specified function of x) an integral equation must still be solved to express the 
gasification rate as a function of x instead of .$. Having obtained the gasification 
rate, we can calculate the velocity and pressure fields from (8) and from the 

17-2 
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integral of (2).  The first boundary condition in (C 1)  and the condition on PI at  
x = 0 serve to determine the composition field, which in this case can be cal- 
culated most easily by the iterative procedure given in (16). 

As an example, for a circular cross-section we have 
a, 

P 2  = P Z l n +  (1 -P2d c ( w r j  1 [Jo~Yj9")/Jl(rj/4741 exp ( - Y 3 4 ,  
i = 1  

where y j (  > 0) are given by Jo(yi/&) = 0, whence the second boundary condition 
in (C 1) yields 

m 

k = 2mob( - n.  v ) , ~  = b[47ra( 1 - l z u , ) / l ]  C exp ( -  y?a[) (C 3 )  
j = 1  

for the mass gasified per unit length of duct per second. If the approximation 
U = uo is introduced into the definition (6) of 5, then (C 3 )  yields k explicitly as a 
function of x. This approximation will not be very accurate in the downstream 
portion of the duct if the total mass entering through the wall is comparable 
with or greater than the mass entering at  x = 0. In such cases, the approxima- 
tion still can be employed to initiate an obvious iterative computation of k(x), 
utilizing alternately first (C 3) and then (1  1) 

viz. U = u,+ kdx. 

If the cross-sectional area of the duct is constant, then (C 3) gives k explicitly as a 
function of 5, and transformation back to the original co-ordinate x can be 
accomplished by means of the formula 

s: 

which can be derived from ( 6 )  and (11) .  

Appendix D. Gas-phase combustion of the wall material 
Suppose that the wall consists of a fuel F ,  that an oxidizer 0 enters at  x = 0 

a,nd that the exothermic reaction vFF + uoO + vpP can OCCUI' in the gas phase. 
We set Pi (i = 1 , 2 , 3 )  equal to the thermal enthalpy-oxidizer concentration 
coupling function for i = 1, the fuel concentrattion-oxidizer concentration 
coupling function for i = 2, and the product Concentration-oxidizer concentra- 
tion coupling function for i = 3;  to obtain dimensionless coupling functions, we 
multiply the pi of T;l'illiams (1965) by vowo, where W, is the molecular weight 
of the oxidizer. Boundary conditions a t  x = 0 then become PZo = /330 = 1, 
Blo- 1 = thermal enthalpy per unit mass of the entering (oxidizer) gas divided 
by the standard heat liberated in the reaction per unit mass of oxidizer consumed. 
TT7e assume that the isothermal wall approximation of appendix C is applicable 
and that gas-phase reaction rates are sufficiently fast for the oxidizer concentra- 
tion at the wall to be negligibly small. The wall boundary conditions then become 

Plw = constant, (an. VP,),, = (n . V L ) ? ~ ,  

(an. VP2)w = [n. V(V + P 2 ) l W  (an. VPs)%> = (n. VP,),, 
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where plm is the known ratio of the thermal enthalpy at the wall to the standard 
heat of reaction per unit mass of oxidizer, L is the ratio of the heat of gasification 
per unit mass to the standard heat of reaction per unit mass of oxidizer, and 
v = vo Wo/vF W, is the stoichiometric mixture ratio. 

From the first two expressions in (D 1) and from the fact that plo is known, it 
will be noted that the problems of computing the p1 field and the wall gasifica- 
tion rate are precisely the same as the corresponding simplified, isothermal-wall 
problems of appendix C. Therefore, the gasification rate problem requires no 
further discussion [e.g. (C3) can be obtained, with (1-pzw)/Z replaced by 
(/&o-p2w)/L]. Velocity and pressure fields can be calculated from (8) and (2); the 
next-to-last condition in (D 1) (along with pz0 = 1) may be used to obtain the 
pz field through (16); the last condition in (D 1) (along with p30 = 1) may be used 
to obtain the p3 field through (16). Temperature and concentration fields follow 
from these results only in a flame-surface approximation. It would be of interest 
to calculate flame shapes, which are given by the equation p2 = 0,  but since the 
p2 field is calculated iteratively, only a first iterative approximation to  the flame 
shape can be obtained in closed form. 

Although an appreciable amount of numerical work is necessary in obtaining 
complete solutions, these solutions contain a great deal of information. For 
example, one could trace the flame from the lip of the duct to the downstream 
point at which it reaches the centre line, follow the axial decay of oxidizer con- 
centration along the centre line, observe how the centre-line temperature rises 
at first and then falls after passing the flame, obtain the asymptotic approach to 
an isothermal, fuel-rich flow with vanishing gasification rate, etc. 
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